
30 Web Accessibility Tips

These web accessibility tips can be used by web
designers, developers, or content authors to
guide them in creating or deploying web-based
resources that are fully accessible to all users.
This list is not intended to replace or map to
formal standards such as the World Wide Web
Consortium’s (W3C’s) Web Content Accessibility
Guidelines (w3.org/WAI/standards-guidelines/
wcag/). Have suggestions for how this list can be
improved? Please send your ideas to accesscomp@
uw.edu.

1. Add proper alt text to images.
Use alt text to provide access to the content of
images for individuals who cannot see them,
including people using screen readers or
Braille output devices. Alt text is supported
by most document formats, including HTML,
Microsoft Word, and Adobe PDF. For more
information, visit uw.edu/accessibility/checklist/
images.

2. Use headings properly.
Use headings and subheadings to form an
outline of the page. Do not skip heading
levels. They help non-visual users (including
search engines) to understand how the
page is organized, and make it easy for
screen reader users to navigate. For more
information, visit uw.edu/accessibility/checklist/
structure.

3. Create accessible PDFs.
Use “tagged PDF”, the only type of PDF
that supports headings and alt text for
images. Use the PDF Accessibility Checker
that’s provided by Adobe Acrobat. For
more information, visit uw.edu/accessibility/
documents.

4. Know when to use PDF.
PDF preserves a document’s appearance
across operating systems and devices. If this
characteristic is not essential, consider using
another format such as HTML, which is
much more accessible.

5. Use ARIA landmarks.
The W3C Accessible Rich Internet
Applications (ARIA) specification makes it
possible to produce accessible interactive
web applications. One easy entry into ARIA
is landmark roles. Simply add an HTML
attribute for one of the eight landmark
roles (e.g., role=”navigation”, role=”main”)
and users will be able to jump directly
to that section of the page with a single
keystroke. Alternatively, use HTML semantic
elements that map to ARIA roles. For more
information, visit uw.edu/accessibility/checklist/
structure.

6. Add labels to form fields.
Use the HTML label element so screen reader
users will know which labels or prompts are
associated with which form fields. For more
information, visit uw.edu/accessibility/checklist/
forms.

by Terrill Thompson, IT Accessibility Team Manager

mailto:accesscomp%40uw.edu?subject=
mailto:accesscomp%40uw.edu?subject=
http://uw.edu/accessibility/checklist/images
http://uw.edu/accessibility/checklist/images
http://www.uw.edu/accessibility/checklist/structure
http://www.uw.edu/accessibility/checklist/structure
uw.edu/accessibility/documents
uw.edu/accessibility/documents
http://uw.edu/accessibility/checklist/structure
http://uw.edu/accessibility/checklist/structure
http://uw.edu/accessibility/checklist/forms
http://uw.edu/accessibility/checklist/forms

2

7. Group related form fields together.
In HTML, wrap groups of checkboxes or
radio buttons in a fieldset element, and wrap
the question or prompt that applies to them
all in a legend element. For more information,
visit uw.edu/edu/accessibility/checklist/forms.

8. Markup tables appropriately.
Use HTML markup properly to communicate
relationships between column and row
headers and the data cells within their scope.
For more information, visit webaim.org/
techniques/tables/data.

9. Identify language of text.
Since some screen readers are multi-lingual,
use markup to identify the default language
of a document and of any text that deviates
from the default. For more information, visit
uw.edu/accessibility/checklist/language.

10. Provide sufficient color contrast.
Be sure foreground and background have
adequate contrast. There are many free tools
that can help with this. For more information,
visit uw.edu/accessibility/checklist/contrast.

11. Avoid using tiny fonts.
Since users may be unaware they can
increase font size using browser hot keys, use
a reasonably large font size by default; then,
users can make it smaller if desired. Note that
a font size of 1em uses the default browser
font size, therefore is an ideal choice for most
text, thereby honoring users’ preferences and
expectations.

12. Respect white space.
Provide plenty of space between lines and
blocks of text. This helps many users to more
easily track text horizontally, and generally
makes text easier to read.

13. Provide visible indication of focus.
In CSS, use :hover to make a page come alive,
responding to user’s mouse movements.
For those who aren’t using a mouse, use
:focus for the same functionality. For more
information, visit uw.edu/accessibility/checklist/
focus.

14. Use text, not pictures of text.
Use text instead of pictures of text, and
control its appearance using CSS. Pictures
of text become blurry when enlarged, take
longer to download, and are inefficient for
the website author to edit.

15. Think twice about the words you choose.
Keep your content simple to read and
understand. Often web authors use larger
words and longer sentences than is really
necessary.

16. Caption video.
Captions provide benefits to all users. There
are many free, easy-to-use tools available
that support the process of transcribing and
captioning videos. For more information,
visit uw.edu/accessibility/videos.

17. Describe video.
For people are unable to see video, create
a script that includes brief descriptions
of important visual content, then provide
that as a separate description track, either
as timed text or recorded narration. This
solution is known as audio description. For
more information, visit uw.edu/accessibility/
videos/#description.

http://uw.edu/edu/accessibility/checklist/forms
http://webaim.org/techniques/tables/data
http://webaim.org/techniques/tables/data
http://uw.edu/accessibility/checklist/language
http://uw.edu/accessibility/checklist/contrast
http://uw.edu/accessibility/checklist/focus
http://uw.edu/accessibility/checklist/focus
http://uw.edu/accessibility/videos
http://uw.edu/accessibility/videos/#description
http://uw.edu/accessibility/videos/#description

3

18. Provide a transcript.
Provide a transcript for video and audio so
individuals who are deaf-blind and those
with low Internet bandwidth can access
the content. Transcripts benefit all users by
allowing them to access content quickly.

19. Choose media players that support
accessibility.
When choosing a media player, ask questions
like: Does this player support closed
captions? Does it support description?
Can it be operated without a mouse? Are
buttons and controls accessible to screen
reader users? Able Player (ableplayer.github.
io/ableplayer) is a free player created with
accessibility in mind by the University of
Washington, with help from the open source
community.

20. Choose a website navigation menu that
works for all users.
When creating a navigation menu, Ask
questions like: Can this menu be operated by
keyboard alone? If it can, is doing so efficient
or does it require dozens or hundreds of
keystrokes? Consult credible resources such
as the WAI-ARIA Authoring Practices (w3.
org/TR/wai-aria-practices) for accessible design
patterns and examples on how to properly
code navigation menus.

21. Create JavaScript widgets that support
accessibility.
An accessible interactive widget is one that
can be operated with the keyboard alone,
uses ARIA to communicate with assistive
technology (AT), and degrades gracefully for
users who don’t have the latest AT. Consult
the WAI-ARIA Authoring Practices (w3.org/
TR/wai-aria-practices) for accessible design
patterns and examples on how to properly
code a wide variety of common widgets.

22. Choose JavaScript widgets that support
accessibility.
If choosing to use an existing widget rather
than creating your own, perform due
diligence. Check the documentation and bug
reports for details about accessibility. Test
widgets using keyboard alone, or using AT,
and ask users with disabilities to test them.

23. Know how your Learning Management
Systems (LMS) and Content Management
Systems (CMS) support accessibility.
Most LMSs and CMSs provide some level
of support for accessibility. Understand
the accessibility features of the tools you’re
using. If there are accessibility shortcomings,
understand the workarounds. Know which
themes, plug-ins, and modules are accessible,
and recommend or require those over
inaccessible options.

24. Test web pages using a keyboard.
Take the #nomouse challenge! Try navigating
the web page and controlling all its features
using the tab key on a keyboard; don’t touch
the mouse. This simple test is typically a
good indicator of accessibility. For more
information, see nomouse.org.

25. Test pages using high contrast color
schemes.
All major operating systems and some web
browsers have high contrast color schemes
available. When these are enabled, make sure
that all important page content is still visible.

26. Test pages with assistive technologies.
There are free screen readers and other AT
available that can be used for testing. You
don’t have to become an expert user, but
simple tests with AT can provide valuable
insights into whether certain features on
a web page might present accessibility
problems. For more information, see the
WebAIM article Testing with Screen Readers
(webaim.org/articles/screenreader_testing), as
well as their series of quick guides on testing
with specific screen readers.

http://ableplayer.github.io/ableplayer
http://ableplayer.github.io/ableplayer
http://w3.org/TR/wai-aria-practices
http://w3.org/TR/wai-aria-practices
http://w3.org/TR/wai-aria-practices
http://w3.org/TR/wai-aria-practices
webaim.org/articles/screenreader_testinghttp://

4

27. Test pages on mobile devices.
Growing numbers of users, including users
with disabilities, are accessing the web using
phones, tablets, and other mobile devices.
Test your website using mobile devices,
and when doing so, be sure to check for
accessibility.

28. Ask vendors specific questions about the
accessibility of their products.
When procuring products from third party
vendors, we are dependent on those vendors
to provide products that work for all users.
Always ask about accessibility of products,
even for minor purchases. For major
products, consider adopting a more formal
process for addressing accessibility. For
more information, visit uw.edu/accessibility/
procurement.

29. Demand accessibility!
If a product is not accessible, avoid buying it,
using it, or supporting it. Work to implement
policies on your campus that require IT
purchases to be accessible. If it is required
that an inaccessible product be used because
it is the only alternative, put the vendor
on notice that you expect to purchase an
accessible alternative when it becomes
available.

30. Get involved!
There are many communities of practice that
are working together on making the web
(and world) more accessible. For example,
consider getting involved with the Access
Technology Higher Education Network
(ATHEN; athenpro.org) or EDUCAUSE IT
Accessibility Community Group (educause.
edu/community/it-accessibility-community-
group). Together we can make a difference!

About AccessComputing
The Paul G. Allen School of Computer Science
& Engineering and DO-IT (Disabilities,
Opportunities, Internetworking and Technology)
at the University of Washington lead
AccessComputing, a project that aims to increase
the participation of people with disabilities in
computing careers nationwide.

For further information, to be placed on the
mailing list, request materials in an alternate
format, or to make comments or suggestions
about DO-IT publications or web pages, contact:

University of Washington
Box 354842
Seattle, WA 98195-4842
accesscomp@uw.edu
www.uw.edu/accesscomputing/
206-685-DOIT (3648) (voice/TTY)
888-972-DOIT (3648) (toll free voice/TTY)
509-328-9331 (voice/TTY) Spokane
AccessComputing
Dr. Richard Ladner, PI
Dr. Sheryl Burgstahler, Co-PI
Dr. Amy J. Ko, Co-PI
Dr. Jacob O. Wobbrock, Co-PI
Dr. Brianna Blaser, Project Coordinator

Acknowledgment
AccessComputing is supported by the National
Science Foundation under Grant #CNS-0540615,
CNS-0837508, CNS-1042260, and CNS-1539179.
Any opinions, findings, and conclusions or
recommendations expressed in this material are
those of the authors and do not necessarily reflect
the views of the National Science Foundation.

Copyright © 2020, University of Washington.
Permission is granted to copy these materials for
educational, noncommercial purposes provided
the source is acknowledged.

University of Washington
Computer Science and Engineering
DO-IT
UW Information Technology

03/27/2020

http://uw.edu/accessibility/procurement
http://uw.edu/accessibility/procurement
http://athenpro.org
http://educause.edu/community/it-accessibility-community-group
http://educause.edu/community/it-accessibility-community-group
http://educause.edu/community/it-accessibility-community-group
mailto:accesscomp@u.washington.edu
http://www.washington.edu/accesscomputing/

	Equal Access: Universal Design of Computing Departments
	About AccessComputing

Accessibility Report

		Filename:

		30_Web_Tips_04_10_20_a11y.pdf

		Report created by:

		Gaby de Jongh, IT Accessibility Specialist, gabyd@uw.edu

		Organization:

		UW-IT, Accessible Technology Services

 [Personal and organization information from the Preferences > Identity dialog.]

Summary

The checker found no problems in this document.

		Needs manual check: 3

		Passed manually: 0

		Failed manually: 0

		Skipped: 1

		Passed: 28

		Failed: 0

Detailed Report

		Document

		Rule Name		Status		Description

		Accessibility permission flag		Passed		Accessibility permission flag must be set

		Image-only PDF		Passed		Document is not image-only PDF

		Tagged PDF		Passed		Document is tagged PDF

		Logical Reading Order		Needs manual check		Document structure provides a logical reading order

		Primary language		Passed		Text language is specified

		Title		Passed		Document title is showing in title bar

		Bookmarks		Passed		Bookmarks are present in large documents

		Color contrast		Needs manual check		Document has appropriate color contrast

		Page Content

		Rule Name		Status		Description

		Tagged content		Passed		All page content is tagged

		Tagged annotations		Passed		All annotations are tagged

		Tab order		Passed		Tab order is consistent with structure order

		Character encoding		Passed		Reliable character encoding is provided

		Tagged multimedia		Passed		All multimedia objects are tagged

		Screen flicker		Passed		Page will not cause screen flicker

		Scripts		Passed		No inaccessible scripts

		Timed responses		Passed		Page does not require timed responses

		Navigation links		Needs manual check		Navigation links are not repetitive

		Forms

		Rule Name		Status		Description

		Tagged form fields		Passed		All form fields are tagged

		Field descriptions		Passed		All form fields have description

		Alternate Text

		Rule Name		Status		Description

		Figures alternate text		Passed		Figures require alternate text

		Nested alternate text		Passed		Alternate text that will never be read

		Associated with content		Passed		Alternate text must be associated with some content

		Hides annotation		Passed		Alternate text should not hide annotation

		Other elements alternate text		Passed		Other elements that require alternate text

		Tables

		Rule Name		Status		Description

		Rows		Passed		TR must be a child of Table, THead, TBody, or TFoot

		TH and TD		Passed		TH and TD must be children of TR

		Headers		Passed		Tables should have headers

		Regularity		Passed		Tables must contain the same number of columns in each row and rows in each column

		Summary		Skipped		Tables must have a summary

		Lists

		Rule Name		Status		Description

		List items		Passed		LI must be a child of L

		Lbl and LBody		Passed		Lbl and LBody must be children of LI

		Headings

		Rule Name		Status		Description

		Appropriate nesting		Passed		Appropriate nesting

Back to Top
